Credit Risk Evaluation with a Least Squares Fuzzy Support Vector Machines Classifier
نویسندگان
چکیده
منابع مشابه
Credit Risk Evaluation with a Least Squares Fuzzy Support Vector Machines Classifier
A least squares fuzzy support vectormachine (LS-FSVM)model that integrates advantages of fuzzy support vectormachine (FSVM) and least squares method is proposed for credit risk evaluation. In the proposed LS-FSVM model, the purpose of incorporating the concepts of fuzzy sets is to add generalization capability and outlier insensitivity, while the least squares method is adopted to reduce the co...
متن کاملFuzzy Least Squares Twin Support Vector Machines
Least Squares Twin Support Vector Machine (LSTSVM) is an extremely efficient and fast version of SVM algorithm for binary classification. LSTSVM combines the idea of Least Squares SVM and Twin SVM in which two nonparallel hyperplanes are found by solving two systems of linear equations. Although, the algorithm is very fast and efficient in many classification tasks, it is unable to cope with tw...
متن کاملA Modified Least Squares Support Vector Machine Classifier with Application to Credit Risk Analysis
In this paper, a modified least squares support vector machine classifier, called the C-variable least squares support vector machine (C-VLSSVM) classifier, is proposed for credit risk analysis. The main idea of the proposed classifier is based on the prior knowledge that different classes may have different importance for modeling and more weight should be given to classes having more importan...
متن کاملFuzzy least squares support vector machines for multiclass problems
In least squares support vector machines (LS-SVMs), the optimal separating hyperplane is obtained by solving a set of linear equations instead of solving a quadratic programming problem. But since SVMs and LS-SVMs are formulated for two-class problems, unclassifiable regions exist when they are extended to multiclass problems. In this paper, we discuss fuzzy LS-SVMs that resolve unclassifiable ...
متن کاملLeast Squares Support Vector Machines: an Overview
Support Vector Machines is a powerful methodology for solving problems in nonlinear classification, function estimation and density estimation which has also led recently to many new developments in kernel based learning in general. In these methods one solves convex optimization problems, typically quadratic programs. We focus on Least Squares Support Vector Machines which are reformulations t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Dynamics in Nature and Society
سال: 2014
ISSN: 1026-0226,1607-887X
DOI: 10.1155/2014/564213